Vascular Injury Induces Tropoelastin Synthesis and Elastic Fiber Formation In Vitro and In Neointima Retrovirally Mediated Overexpression of Versican V3 by Arterial Smooth Muscle Cells
نویسندگان
چکیده
Versican is an extracellular matrix (ECM) proteoglycan that is synthesized as multiple splice variants. In a recent study, we demonstrated that retroviral-mediated overexpression of the variant V3, which lacks chondroitin sulfate (CS) chains, altered arterial smooth muscle cell (ASMC) phenotype in short-term cell culture. We now report that V3-overexpressing ASMCs exhibit significantly increased expression of tropoelastin and increased formation of elastic fibers in long-term cell cultures. In addition, V3-overexpressing ASMCs seeded into ballooned rat carotid arteries continued to overexpress V3 and, at 4 weeks after seeding, produced a highly structured neointima significantly enriched in elastic fiber lamellae. In contrast to the hydrated, myxoid neointima produced by rounded or stellate vector-alone– transduced cells, V3-expressing cells produced a compact and highly ordered neointima, which contained elongated ASMCs that were arranged in parallel arrays and separated by densely packed collagen bundles and elastic fibers. These results indicate that a variant of versican is involved in elastic fiber assembly and may represent a novel therapeutic approach to facilitate the formation of elastic fibers. (Circ Res. 2002;90:481-487.)
منابع مشابه
Retrovirally mediated overexpression of versican v3 by arterial smooth muscle cells induces tropoelastin synthesis and elastic fiber formation in vitro and in neointima after vascular injury.
Versican is an extracellular matrix (ECM) proteoglycan that is synthesized as multiple splice variants. In a recent study, we demonstrated that retroviral-mediated overexpression of the variant V3, which lacks chondroitin sulfate (CS) chains, altered arterial smooth muscle cell (ASMC) phenotype in short-term cell culture. We now report that V3-overexpressing ASMCs exhibit significantly increase...
متن کاملInhibition of versican synthesis by antisense alters smooth muscle cell phenotype and induces elastic fiber formation in vitro and in neointima after vessel injury.
The proteoglycan versican is implicated in several atherogenic events, including stimulation of vascular smooth muscle cell (VSMC) growth and migration, retention of lipoproteins, and promotion of thrombogenesis. A high content of intimal versican also correlates with a low content of elastin, suggesting an inhibitory role for versican in elastogenesis. To determine whether reduced production o...
متن کاملNeointima formed by arterial smooth muscle cells expressing versican variant V3 is resistant to lipid and macrophage accumulation.
OBJECTIVE Extracellular matrix (ECM) of neointima formed following angioplasty contains elevated levels of versican, loosely arranged collagen, and fragmented deposits of elastin, features associated with lipid and macrophage accumulation. ECM with a low versican content, compact structure, and increased elastic fiber content can be achieved by expression of versican variant V3, which lacks cho...
متن کاملExpression of V3 Versican by Rat Arterial Smooth Muscle Cells Promotes Differentiated and Anti-inflammatory Phenotypes.
Arterial smooth muscle cells (ASMCs) undergo phenotypic changes during development and pathological processes in vivo and during cell culture in vitro. Our previous studies demonstrated that retrovirally mediated expression of the versican V3 splice variant (V3) by ASMCs retards cell proliferation and migration in vitro and reduces neointimal thickening and macrophage and lipid accumulation in ...
متن کاملDecreased neointimal thickening after arterial wall injury in inducible nitric oxide synthase knockout mice.
Mechanical injury in vivo results in the expression of the inducible form of nitric oxide synthase (iNOS) in vascular smooth muscle cells. However, the role of iNOS in modulating neointima formation after arterial wall injury is not clear. To determine whether the induction of iNOS gene expression promotes or attenuates the neointimal response to injury, we used a murine model of perivascular i...
متن کامل